Оптимизация процесса обработки гильз гидроцилиндров методом вихревого растачивания

Язык труда и переводы:
УДК:
621.7.01
Дата публикации:
28 мая 2022, 12:18
Категория:
Инновационные технологии ремонта, реновации и восстановления в машиностроении
Авторы
Толмачева Татьяна Александровна
Юго-Западный государственный университет
Аннотация:
Рассмотрена задача оптимизации процесса вихревого растачивания по конструктивным параметрам многорезцового блока и режимам обработки. Показаны зависимости величины шероховатости, погрешности формы, температуры в зоне резания и на поверхности заготовки от параметров режимов обработки. Построены области допустимых значений искомых параметров. Определены режимы обработки обеспечивающие оптимальное значение осевой подачи.
Ключевые слова:
производительность процесса, метод вихревого растачивания, гильза гидроцилиндра, оптимизация процесса обработки, режимы растачивания
Основной текст труда

Производительность является одним из основных показателей эффективности процесса механической обработки, однако, при растачивании сквозных отверстий гильз гидроцилиндров важно также обеспечить выполнение дополнительных требований: внутренняя рабочая поверхность гильзы должна быть изготовлена по 8-му и 11-му квалитету точности и иметь наибольшую высоту профиля шероховатости не выше  Rz = 1,25 мкм [1]. При этом с позиций обеспечения качества обрабатываемой поверхности и заданной точности немаловажную роль играет изменение температуры поверхностного слоя обработанной детали и температура в зоне резания.

Повысить производительность процесса обработки и обеспечить требуемую величину шероховатости поверхности, улучшить физико-механические свойства поверхностного слоя гидроцилиндра после обработки позволит использование метода вихревого растачивания вращающимся многорезцовым блоком [2–4, 5].

С целью повышения производительности вихревого растачивания необходимо решить задачу оптимизации процесса по конструктивным параметрам многорезцового блока и режимам обработки. Для решения поставленной задачи была построена модель оптимизации с целевой функцией

{S_{\mathop {\rm {m}} \nolimits }}\to \max ,(1)

где Sm — осевая подача инструмента, и ограничениями: по соотношению частоты оборотов блока к оборотам заготовки (К); по высоте профиля  шероховатости обработанной поверхности (Rzmax); по значению температуры в зоне резания (T2); по значению температуры на поверхности заготовки (T1); по значению статической составляющей погрешности формы, формируемой резцовым блоком(Δx), для чего была выполнена серия экспериментов с использованием методов компьютерного моделирования и последующим построением соответствующих эмпирических зависимостей.

Для решения поставленной задачи оптимизации процесса обработки необходимо установить зависимости величины шероховатости, погрешности формы, температуры в зоне резания и на поверхности заготовки от параметров режимов обработки.

Для построения данных зависимостей была проведена серия  экспериментов, реализация которых производилась с использованием методов компьютерного моделирования.

В результате обработки результатов эксперимента были получены уравнения с использованием логарифмических преобразований, которые имеют следующий вид:

  • регрессионное уравнение высоты остаточных гребешков шероховатости отверстий в осевом направлении: R{z_{os}}={\frac {127,499S{m^{2,003}}}{{N_{b}}^{2,004}}};(2)
  • регрессионное уравнение высоты остаточных гребешков шероховатости отверстий в радиальном направлении: R{z_{rad}}={\frac {2,502R_{1}^{-25,664+9,028\ln \left({R_{2}}\right)+0,175\ln \left(K\right)}R_{2}^{32,498-0,188\ln \left(K\right)}{e^{-0,368\ln {{\left({R_{1}}\right)}^{2}}-9,928\ln {{\left({R_{2}}\right)}^{2}}-0,062\ln {{\left(K\right)}^{2}}}}}{{Z^{1,995}}{K^{1,474}}}}.(3)

На основе уравнений (2) и (3) было построено обобщенное регрессионное уравнение высоты остаточных гребешков при растачивании внутренних отверстий вращающимся резцовым блоком: R{z_{\max }}=\max \left({{R_{rad}},{R_{os}}}\right).(4)

Также на основании результатов эксперимента были получены регрессионные уравнения для температуры на поверхности заготовки Т1 и для температуры в зоне резания Т2: {T_{1}}=14,79{\left({\frac {S_{m}}{{N_{b}}Z}}\right)^{-1,12+0,20\ln B}}{B^{0,71}},(5)

{T_{2}}=131,05{e^{0,02\ln \left({\frac {6,28{R_{1}}}{KZ}}\right)}}{B^{0,3}},(6) где B={\frac {0,006{R_{1}}{N_{b}}}{K}}+0,006{R_{2}}{N_{b}}.

Также по результатам эксперимента были получены уравнения для радиальной составляющей силы резания Px, которая имеет вид: {P_{x}}=1,29\cdot {10^{9}}{S^{3,8}}{H^{0,28\ln M\ln \left({6,28S}\right)+0,75\ln M}},(7)

и осевой составляющей силы резания Pz: {P_{z}}={\frac {23871,7{S^{0,19}}{e^{-0,39\ln {M^{2}}+0,16\ln {{\left({{\frac {0,006{R_{1}}{N_{b}}}{K}}+0,006{R_{2}}{N_{b}}}\right)}^{2}}}}}{H^{1,71}}},(8) где, H={\frac {0,006{R_{1}}{N_{b}}}{K}}+0,006{R_{2}}{N_{b}} , S={\frac {R_{1}}{KZ}} , M={\frac {S_{m}}{{N_{b}}Z}} .

Оценка статической составляющей погрешности формы, формируемой резцовым блоком выполнялась на основе уравнений (7) и (8) по формуле: \Delta x={\frac {{P_{x}}+{P_{z}}\cdot {\frac {R_{2}}{l}}}{j_{x}}},(9)

где l —  длина вылета инструмента;

jx  — жесткость инструментальной системы.

Формула (8) была получена на основе построения и анализа баланса точности расточной системы по методике описанной в [6].

Для поиска решения при заданном радиусе заготовки R1 в многопараметрическом пространстве было выполнено построение области допустимых значений искомых параметров в системе координат (SmОK) путем нахождения линий пересечения координатной плоскости (SmОK) с определяющими рассматриваемые ограничения функциями, в точках пространства дискретных параметров: радиуса резцового блока (R2) и количества резцов (Z).

Так, на рисунке 1 показаны две области допустимых значений проектных параметров в точках пространства дискретных параметров R2=40 мм, Z=2 (рис.1а) и R2=40 мм, Z=4 (рис.1б) при радиусе заготовки равном 50мм. При этом линии ограничений: 1 — минимальное значение шероховатости обработанной поверхности равное 0,64 мкм; 2 — максимальное значение шероховатости обработанной поверхности равное 1,25 мкм; 3 — температура на поверхности заготовки равная 720 °С; 4 — статической составляющая погрешности формы, формируемой резцовым блоком равная  2 мкм. При этом все линии ограничений построены при температуре в зоне резания 730 °С.

Рис. 1. Область допустимых значений параметров режимов обработки: а — при R2 = 40 мм, Z = 2; б — при R2 = 40 мм, Z = 4

На рис. 1 видно, что максимальное значение минутной подачи соответствует т. А. Так для обработки вихревым растачиванием гильзы гидроцилиндра радиусом 50 мм резцовым блоком радиусом 40 мм с 2-мя пластинами необходимы следующие режимы обработки: Nb=1233 об/мин, К = 170 (Nz=7об/мин), Sm = 123 мм/мин, а для обработки гильзы гидроцилиндра радиусом 50 мм таким же резцовым блоком, но с 4-ю пластинами режимы обработки будут: Nb=1224 об/мин, К = 85 (Nz=14 об/мин), Sm = 122 мм/мин, при этом значение шероховатости обработанной поверхности Rzmax= 1,25 мкм, температура в зоне резания равна 730 °С, температура на заготовке не превышает 720 °С, а статическая составляющая погрешности формы, приходящаяся на резцовый блок не превышает 2 мкм.

Таким образом, на основе проведенных исследований можно утверждать, что оптимальное значение осевой подачи будет определяться точкой экстремума функции шероховатости при R2=40 мм и Z=2 на всем диапазоне исследуемых параметров (50 мм ≤ R1 ≤ 100 мм,40 мм ≤ R2 ≤ 90 мм, 2 ≤ Z≤ 8).

Для полноты оценки области допустимых параметров режимов обработки необходимо провести экспериментальное исследование для построения регрессионного уравнения периода стойкости инструмента.

Литература
  1. Уткин Н.Ф., Кижняев Ю.Н., Плужников С.К. Обработка глубоких отверстий. Ленинград, Машиностроение, 1988, 268 с.
  2. Ванин И.В., Гречишников В.А., Куц В.В., Разумов М.С., Гречухин А.Н. Исследование процесса формообразования внутренних цилиндрических поверхностей длинных тонкостенных деталей методом планетарного растачивания. Вестник МГТУ Станкин, 2018, no. 3 (46), с. 30–34.
  3. Гречишников В.А., Куц В.В., Разумов М.С. Определение погрешности формы детали при формообразовании планетарным механизмом методами геометрической теории резания. СТИН, 2017, no. 4, с. 24–26.
  4. Куц В.В. Методология предпроектных исследований специализированных металлорежущих систем. Автореф. дис. ... докт. техн. наук. Курск, 2012, 32 с.
  5. Куц В.В., Толмачева Т.А. Исследование глубины прогрева гильз гидроцилиндров при несоосном растачивании вращающимся резцовым блоком. Известия Тульского государственного университета. Технические науки, 2020, № 10, с. 80–84.
  6. Решетов Д.Н., Портман В.Т. Точность металлорежущих станков. Москва, Машиностроение, 1986, 336 с.
Ваш браузер устарел и не обеспечивает полноценную и безопасную работу с сайтом.
Установите актуальную версию вашего браузера или одну из современных альтернатив.